A NEW APPROACH TO \triangle^{16} -ANDROSTENES

L. Caglioti and M. Magi

Istituto di Chimica Generale, Politecnico, Milano

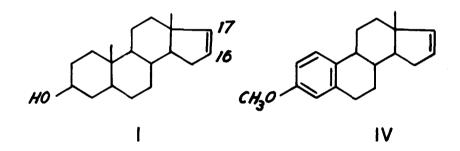
(Received 25 July 1962; in revised form 20 September 1962)

THE synthesis of Δ^{16} derivatives of androstane starting from easily available 17 oxy or oxo derivatives has been largely investigated¹. Sondheimer <u>et al.</u>² developed a convenient way, involving a four steps synthesis from 17 keto derivatives of androstane.

Recently in our laboratory we achieved the synthesis³ of \triangle ¹⁶ androstenes through hydroboration of enolderivatives of 17 keto compounds, followed by treatment of the reaction mixture with acetic anhydride, and Barton reported⁴ a three steps synthesis from 17 ketones, involving oxidation with iodine of hydrasones of 17 ketones, and reduction of the resulting vinil iodide with sodium and ethanol.

In the course of a research on the reduction of tosylhydrasones of ketones and aldehydes with LiAlH_4 , we remarked that tosylhydrasones of 17 keto steroids, by treating with LiAlH_4 in tetrahydrofurane, give a 60-70% yield of the corresponding \triangle^{16} unsaturated derivatives?

L.F. Fieser, M. Fieser, <u>Steroids</u> p. 528 Reinhold (1959).


² F. Sondheimer, O. Mancera, M. Urquisa, G. Rosenkranz, <u>J. Amer. Chem.</u> <u>Soc. 77</u>, 4145 (1955).

³ L. Caglioti, G. Cainelli, G. Maina, A. Selva, <u>Gess. Chim. Ital</u>. <u>92</u>, 309 (1962).

⁴ D.H.R. Barton, R.E. O Brien, S. Sternhell, <u>J.Chem.Soc</u>. 470 (1962).

⁵ In other cases the reaction follows another route: for instance, cholestan-3 one and coprostan-3 one tosylhydrasones are reduced by LiAlH₄ to cholestane and coprostane (L.Caglioti, N.Magi, unpublished).

The tosylhydrazone of 17-keto-3 β -acetoxy-5 α -androstane (m.p. 175°)⁶ refluxed overnight in dry tetrahydrofurane with an excess of LiAlH₄, after careful destruction of excess hydride and extraction with ether, gave a 70% yield of \triangle^{16} -5 α androsten-3 β ol (I) (m.p. 123°, $[\alpha] \frac{20^{\circ}}{D} + 16^{\circ}$; found: C, 83,22; H, 11,28. $C_{19}H_{30}$ 0 requires C, 83,15; H, 11,02%), identified with an authentic specimen. Reduction of (I) with Pd charcoal, after adsorption of I mol H₂, gave a product (II) (m.p. 148°, $[\alpha x] \frac{20^{\circ}}{D} = -1^{\circ}$; found: C, 82,79; H, 11,88. $C_{19}H_{32}$ 0 requires C, 82,54; H, 11,66%) identical to an authentic specimen of 3 β -hydroxy-5- α -androstane.

The reaction was extended to the tosylhydrazone of estrone methylether⁷ (III). Treatment of (III) in the above mentioned conditions, after working up with ether, gave a 60-70% yield of a compound (IV) (m.p. $63^{\circ}, [\propto]_{D}^{20^{\circ}} + 113^{\circ}$; found: C, 84,93; H, 9,05. $C_{19}H_{24}O$ requires C, 85,02; H, 9,01%), the 3-methoxy-1,3,5(10), 16-estratetraene. (IV), after treatment with OsO₄ in ether - pyridine and working

⁶ In general tosylhydrazones are nicely crystalline compounds, rapidly available from ketones by boiling them in a methanolic solution with an excess of p-toluensulphonyl hydrazine. As a result of cooling, the tosylhydrazones crystallize out in an almost pure form.

⁷ W.F. Johns, <u>J. Org. Chem</u>. <u>26</u>, 4583 (1961).

up of osmate ester with mannite in alkali, gave a nicely crystalline diol (∇) (m.p. 158-160°, $[\alpha]_D^{20^\circ}$ + 48°; found; C, 75,52; H, 8,68. $C_{19}H_{26}O_3$ requires C, 75,46; H, 8,67%), the $16 \propto -17 \propto$ dihydroxy-3 methoxy-1,3,5(10) estratriene.

Reduction of (IV) with Pd charcoal in ethanol, after adsorption of 1,1 mol, H₂, furnished a product (VI) (m.p. 75-76°, $[\propto]_{D}^{20^{\circ}}$ + 87°; found: C, 84,54; H, 9,89. C₁₉H₂₆O requires C, 84,39; H, 9,69% which was identified with an authentic specimen of 3 methoxy-1,3,5(10)estratriene.

Also in this case the reaction of a 17 keto tosylhydrazone with LiAlH₄ leads to the formation of a \triangle^{16-17} double bond,⁸ without rearrangement of the adjacent methyl group. This is noteworthy, if we consider that treatment of (III) with Na in ethylenglycol leads⁷, through migration of the methyl group, to the 17/ β -methyl-3 methoxy--18 norestra-1,3,5(10), 13(14)-tetraene and other isomers.

The above described reaction constitutes a rapid way to \triangle ¹⁶ androstenes from the easily available 17 keto androstanes, and seems to have some convenience over the methods used hitherto.

Full details of this work will be published elsewhere.

<u>Acknowledgement</u>. - We thank Prof. A. Quilico for encouragement in this work.

⁸ An attempted conversion of 3β -hydroxyandrost-5en-17one into androsta-5-16-dien-3 β of by reaction of its toluen p-sulphonylhydrazone with sodium in ethylene glycol furnished after acetylation 3β --17 β -diacetoxyandrost-5ene. (W.J. Adams, D.K. Patel, V. Petrov, J. A. Stuart Webb, <u>J. Chem. Soc.</u> 297 (1956).